Avro Parquet
The Avro Parquet connector provides an Apache Pekko Stream Source, Sink and Flow for push and pull data to and from Parquet files.
For more information about Apache Parquet please visit the official documentation.
Project Info: Apache Pekko Connectors Avro Parquet | |
---|---|
Artifact | org.apache.pekko
pekko-connectors-avroparquet
1.0.2
|
JDK versions | OpenJDK 8 OpenJDK 11 OpenJDK 17 |
Scala versions | 2.13.14, 2.12.20, 3.3.3 |
JPMS module name | pekko.stream.connectors.avroparquet |
License | |
API documentation | |
Forums | |
Release notes | GitHub releases |
Issues | Github issues |
Sources | https://github.com/apache/pekko-connectors |
Artifacts
- sbt
val PekkoVersion = "1.0.3" libraryDependencies ++= Seq( "org.apache.pekko" %% "pekko-connectors-avroparquet" % "1.0.2", "org.apache.pekko" %% "pekko-stream" % PekkoVersion )
- Maven
<properties> <pekko.version>1.0.3</pekko.version> <scala.binary.version>2.13</scala.binary.version> </properties> <dependencies> <dependency> <groupId>org.apache.pekko</groupId> <artifactId>pekko-connectors-avroparquet_${scala.binary.version}</artifactId> <version>1.0.2</version> </dependency> <dependency> <groupId>org.apache.pekko</groupId> <artifactId>pekko-stream_${scala.binary.version}</artifactId> <version>${pekko.version}</version> </dependency> </dependencies>
- Gradle
def versions = [ PekkoVersion: "1.0.3", ScalaBinary: "2.13" ] dependencies { implementation "org.apache.pekko:pekko-connectors-avroparquet_${versions.ScalaBinary}:1.0.2" implementation "org.apache.pekko:pekko-stream_${versions.ScalaBinary}:${versions.PekkoVersion}" }
The table below shows direct dependencies of this module and the second tab shows all libraries it depends on transitively.
Source Initiation
Sometimes it might be useful to use a Parquet file as stream Source. For this we will need to create an AvroParquetReader
instance which will produce records as subtypes of GenericRecord
, the Avro record’s abstract representation.
- Scala
-
source
import org.apache.hadoop.conf.Configuration import org.apache.parquet.avro.AvroReadSupport val conf: Configuration = new Configuration() conf.setBoolean(AvroReadSupport.AVRO_COMPATIBILITY, true) val reader = AvroParquetReader.builder[GenericRecord](HadoopInputFile.fromPath(new Path(file), conf)).withConf(conf).build()
- Java
-
source
import org.apache.parquet.hadoop.ParquetReader; import org.apache.avro.generic.GenericRecord; import org.apache.hadoop.fs.Path; import org.apache.avro.Schema; import org.apache.pekko.stream.javadsl.Source; import org.apache.parquet.avro.AvroParquetReader; Configuration conf = new Configuration(); ParquetReader<GenericRecord> reader = AvroParquetReader.<GenericRecord>builder( HadoopInputFile.fromPath(new Path("./test.parquet"), conf)) .disableCompatibility() .build();
After that, you can create the Parquet Source from the initialisation of AvroParquetReader
. This object requires an instance of a org.apache.parquet.hadoop.ParquetReader
typed by a subtype of GenericRecord
.
- Scala
-
source
val source: Source[GenericRecord, NotUsed] = AvroParquetSource(reader) val source: Source[GenericRecord, NotUsed] = AvroParquetSource(reader)
- Java
-
source
Source<GenericRecord, NotUsed> source = AvroParquetSource.create(reader);
Sink Initiation
On the other hand, you can use AvroParquetWriter
as the Apache Pekko Streams Sink implementation for writing to Parquet. In that case, its initialisation would require an instance of org.apache.parquet.hadoop.ParquetWriter
. It will also expect any subtype of GenericRecord
to be passed.
- Scala
-
source
import com.sksamuel.avro4s.Record import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path import org.apache.parquet.avro.AvroReadSupport val file = "./sample/path/test.parquet" val conf = new Configuration() conf.setBoolean(AvroReadSupport.AVRO_COMPATIBILITY, true) val writer = AvroParquetWriter.builder[Record](new Path(file)).withConf(conf).withSchema(schema).build()
- Java
-
source
import org.apache.parquet.hadoop.ParquetWriter; import org.apache.avro.Schema; import org.apache.avro.generic.GenericRecord; import org.apache.avro.generic.GenericRecordBuilder; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.parquet.hadoop.util.HadoopInputFile; Configuration conf = new Configuration(); conf.setBoolean(AvroReadSupport.AVRO_COMPATIBILITY, true); ParquetWriter<GenericRecord> writer = AvroParquetWriter.<GenericRecord>builder(new Path(file)) .withConf(conf) .withWriteMode(ParquetFileWriter.Mode.OVERWRITE) .withSchema(schema) .build();
After that, the AvroParquet Sink can already be used.
The below Scala example demonstrates that any subtype of GenericRecord
can be passed to the stream. In this case the one used is com.sksamuel.avro4s.Record
, which it implements the GenericRecord
Avro interface. See Avro4s or Avrohugger for other ways of generating these classes.
- Scala
-
source
val records: List[Record] = documents.map(format.to(_)) val source: Source[Record, NotUsed] = Source(records) val result: Future[Done] = source .runWith(AvroParquetSink(writer))
- Java
-
source
Sink<GenericRecord, CompletionStage<Done>> sink = AvroParquetSink.create(writer);
Flow Initiation
The representation of a ParquetWriter
as a Flow is also available to use as a streams flow stage, in which as well as the other representations, it will expect subtypes of the Parquet GenericRecord
type to be passed. As a result, it writes into a Parquet file and returns the same GenericRecord
s. Such a Flow stage can be easily created by using the AvroParquetFlow
and providing an AvroParquetWriter
instance as a parameter.
- Scala
-
source
This is all the preparation that we are going to need.val records: List[GenericRecord] val source: Source[GenericRecord, NotUsed] = Source(records) val avroParquet: Flow[GenericRecord, GenericRecord, NotUsed] = AvroParquetFlow(writer) val result = source .via(avroParquet) .runWith(Sink.seq)
- Java
-
source
ParquetWriter<GenericRecord> writer = AvroParquetWriter.<GenericRecord>builder(new Path("./test.parquet")) .withConf(conf) .withSchema(schema) .build(); Flow<GenericRecord, GenericRecord, NotUsed> flow = AvroParquetFlow.create(writer); source.via(flow).runWith(Sink.ignore(), system);
Running the example code
The code in this guide is part of the runnable tests of this project. You are welcome to edit the code and run it in sbt.
- Scala
-
sbt > avroparquet/test