Avro Parquet

The Avro Parquet connector provides an Apache Pekko Stream Source, Sink and Flow for push and pull data to and from Parquet files.

For more information about Apache Parquet please visit the official documentation.

Project Info: Apache Pekko Connectors Avro Parquet
Artifact
org.apache.pekko
pekko-connectors-avroparquet
1.0.2
JDK versions
OpenJDK 8
OpenJDK 11
OpenJDK 17
Scala versions2.13.14, 2.12.20, 3.3.3
JPMS module namepekko.stream.connectors.avroparquet
License
API documentation
Forums
Release notesGitHub releases
IssuesGithub issues
Sourceshttps://github.com/apache/pekko-connectors

Artifacts

sbt
val PekkoVersion = "1.0.3"
libraryDependencies ++= Seq(
  "org.apache.pekko" %% "pekko-connectors-avroparquet" % "1.0.2",
  "org.apache.pekko" %% "pekko-stream" % PekkoVersion
)
Maven
<properties>
  <pekko.version>1.0.3</pekko.version>
  <scala.binary.version>2.13</scala.binary.version>
</properties>
<dependencies>
  <dependency>
    <groupId>org.apache.pekko</groupId>
    <artifactId>pekko-connectors-avroparquet_${scala.binary.version}</artifactId>
    <version>1.0.2</version>
  </dependency>
  <dependency>
    <groupId>org.apache.pekko</groupId>
    <artifactId>pekko-stream_${scala.binary.version}</artifactId>
    <version>${pekko.version}</version>
  </dependency>
</dependencies>
Gradle
def versions = [
  PekkoVersion: "1.0.3",
  ScalaBinary: "2.13"
]
dependencies {
  implementation "org.apache.pekko:pekko-connectors-avroparquet_${versions.ScalaBinary}:1.0.2"
  implementation "org.apache.pekko:pekko-stream_${versions.ScalaBinary}:${versions.PekkoVersion}"
}

The table below shows direct dependencies of this module and the second tab shows all libraries it depends on transitively.

Source Initiation

Sometimes it might be useful to use a Parquet file as stream Source. For this we will need to create an AvroParquetReader instance which will produce records as subtypes of GenericRecord, the Avro record’s abstract representation.

Scala
sourceimport org.apache.hadoop.conf.Configuration
import org.apache.parquet.avro.AvroReadSupport

val conf: Configuration = new Configuration()
conf.setBoolean(AvroReadSupport.AVRO_COMPATIBILITY, true)
val reader =
  AvroParquetReader.builder[GenericRecord](HadoopInputFile.fromPath(new Path(file), conf)).withConf(conf).build()
Java
sourceimport org.apache.parquet.hadoop.ParquetReader;
import org.apache.avro.generic.GenericRecord;
import org.apache.hadoop.fs.Path;
import org.apache.avro.Schema;
import org.apache.pekko.stream.javadsl.Source;
import org.apache.parquet.avro.AvroParquetReader;

Configuration conf = new Configuration();

ParquetReader<GenericRecord> reader =
    AvroParquetReader.<GenericRecord>builder(
            HadoopInputFile.fromPath(new Path("./test.parquet"), conf))
        .disableCompatibility()
        .build();

After that, you can create the Parquet Source from the initialisation of AvroParquetReader. This object requires an instance of a org.apache.parquet.hadoop.ParquetReader typed by a subtype of GenericRecord.

Scala
sourceval source: Source[GenericRecord, NotUsed] = AvroParquetSource(reader)
val source: Source[GenericRecord, NotUsed] = AvroParquetSource(reader)
Java
sourceSource<GenericRecord, NotUsed> source = AvroParquetSource.create(reader);

Sink Initiation

On the other hand, you can use AvroParquetWriter as the Apache Pekko Streams Sink implementation for writing to Parquet. In that case, its initialisation would require an instance of org.apache.parquet.hadoop.ParquetWriter. It will also expect any subtype of GenericRecord to be passed.

Scala
sourceimport com.sksamuel.avro4s.Record
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.parquet.avro.AvroReadSupport

val file = "./sample/path/test.parquet"
val conf = new Configuration()
conf.setBoolean(AvroReadSupport.AVRO_COMPATIBILITY, true)
val writer =
  AvroParquetWriter.builder[Record](new Path(file)).withConf(conf).withSchema(schema).build()
Java
sourceimport org.apache.parquet.hadoop.ParquetWriter;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.generic.GenericRecordBuilder;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.parquet.hadoop.util.HadoopInputFile;

Configuration conf = new Configuration();
conf.setBoolean(AvroReadSupport.AVRO_COMPATIBILITY, true);
ParquetWriter<GenericRecord> writer =
    AvroParquetWriter.<GenericRecord>builder(new Path(file))
        .withConf(conf)
        .withWriteMode(ParquetFileWriter.Mode.OVERWRITE)
        .withSchema(schema)
        .build();

After that, the AvroParquet Sink can already be used.

The below Scala example demonstrates that any subtype of GenericRecord can be passed to the stream. In this case the one used is com.sksamuel.avro4s.Record, which it implements the GenericRecord Avro interface. See Avro4s or Avrohugger for other ways of generating these classes.

Scala
sourceval records: List[Record] = documents.map(format.to(_))
val source: Source[Record, NotUsed] = Source(records)
val result: Future[Done] = source
  .runWith(AvroParquetSink(writer))
Java
sourceSink<GenericRecord, CompletionStage<Done>> sink = AvroParquetSink.create(writer);

Flow Initiation

The representation of a ParquetWriter as a Flow is also available to use as a streams flow stage, in which as well as the other representations, it will expect subtypes of the Parquet GenericRecord type to be passed. As a result, it writes into a Parquet file and returns the same GenericRecords. Such a Flow stage can be easily created by using the AvroParquetFlow and providing an AvroParquetWriter instance as a parameter.

Scala
sourceval records: List[GenericRecord]
val source: Source[GenericRecord, NotUsed] = Source(records)
val avroParquet: Flow[GenericRecord, GenericRecord, NotUsed] = AvroParquetFlow(writer)
val result =
  source
    .via(avroParquet)
    .runWith(Sink.seq)
This is all the preparation that we are going to need.
Java
sourceParquetWriter<GenericRecord> writer =
    AvroParquetWriter.<GenericRecord>builder(new Path("./test.parquet"))
        .withConf(conf)
        .withSchema(schema)
        .build();

Flow<GenericRecord, GenericRecord, NotUsed> flow = AvroParquetFlow.create(writer);

source.via(flow).runWith(Sink.ignore(), system);

Running the example code

The code in this guide is part of the runnable tests of this project. You are welcome to edit the code and run it in sbt.

Scala
sbt
> avroparquet/test