Google Cloud BigQuery Storage

The BigQuery Storage API offers fast access to BigQuery-managed storage using an rpc-based protocol. It is seen as an improvement over the REST API, and bulk data extract jobs for accessing BigQuery-managed table data, but doesn’t offer any functionality around managing BigQuery resources. Further information at the official Google Cloud documentation website.

This connector communicates to the BigQuery Storage API via the gRPC protocol. The integration between Apache Pekko Stream and gRPC is handled by the Apache Pekko gRPC library. Currently, this connector only supports returning each row as an Avro GenericRecord.

Project Info: Apache Pekko Connectors Google Cloud BigQuery Storage
Artifact
org.apache.pekko
pekko-connectors-google-cloud-bigquery-storage
1.0.2
JDK versions
OpenJDK 8
OpenJDK 11
OpenJDK 17
Scala versions2.13.14, 2.12.20, 3.3.3
JPMS module namepekko.stream.connectors.google.cloud.bigquery.storage
License
Forums
Release notesGitHub releases
IssuesGithub issues
Sourceshttps://github.com/apache/pekko-connectors

Artifacts

Apache Pekko gRPC uses Apache Pekko Discovery internally. Make sure to add Apache Pekko Discovery with the same Apache Pekko version that the application uses.

sbt
val PekkoVersion = "1.0.3"
libraryDependencies ++= Seq(
  "org.apache.pekko" %% "pekko-connectors-google-cloud-bigquery-storage" % "1.0.2",
  "org.apache.pekko" %% "pekko-stream" % PekkoVersion,
  "org.apache.pekko" %% "pekko-discovery" % PekkoVersion
)
Maven
<properties>
  <pekko.version>1.0.3</pekko.version>
  <scala.binary.version>2.13</scala.binary.version>
</properties>
<dependencies>
  <dependency>
    <groupId>org.apache.pekko</groupId>
    <artifactId>pekko-connectors-google-cloud-bigquery-storage_${scala.binary.version}</artifactId>
    <version>1.0.2</version>
  </dependency>
  <dependency>
    <groupId>org.apache.pekko</groupId>
    <artifactId>pekko-stream_${scala.binary.version}</artifactId>
    <version>${pekko.version}</version>
  </dependency>
  <dependency>
    <groupId>org.apache.pekko</groupId>
    <artifactId>pekko-discovery_${scala.binary.version}</artifactId>
    <version>${pekko.version}</version>
  </dependency>
</dependencies>
Gradle
def versions = [
  PekkoVersion: "1.0.3",
  ScalaBinary: "2.13"
]
dependencies {
  implementation "org.apache.pekko:pekko-connectors-google-cloud-bigquery-storage_${versions.ScalaBinary}:1.0.2"
  implementation "org.apache.pekko:pekko-stream_${versions.ScalaBinary}:${versions.PekkoVersion}"
  implementation "org.apache.pekko:pekko-discovery_${versions.ScalaBinary}:${versions.PekkoVersion}"
}

The table below shows direct dependencies of this module and the second tab shows all libraries it depends on transitively.

Build setup

The Apache Pekko Connectors Google Cloud BigQuery Storage library contains the classes generated from Google’s protobuf specification.

ALPN on JDK 8

HTTP/2 requires ALPN negotiation, which comes with the JDK starting with version 8u251.

For older versions of the JDK you will need to load the jetty-alpn-agent yourself, but we recommend upgrading.

Configuration

The BigQuery Storage connector shares its basic configuration with all the Google connectors in Apache Pekko Connectors.

Example Test Configuration

pekko.connectors.google.cloud.bigquery.grpc {
  host = "localhost"
  port = 21000
  rootCa = "none"
  callCredentials = "none"
}

For more configuration details consider the underlying configuration for Apache Pekko gRPC.

A manually initialized org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.scaladsl.GrpcBigQueryStorageReaderorg.apache.pekko.stream.connectors.googlecloud.bigquery.storage.javadsl.GrpcBigQueryStorageReader can be used by providing it as an attribute to the stream:

Scala
sourceval reader: GrpcBigQueryStorageReader = GrpcBigQueryStorageReader(BigQueryStorageSettings("localhost", 8000))
val sourceForReader: Source[(ReadSession.Schema, Seq[Source[ReadRowsResponse.Rows, NotUsed]]), Future[NotUsed]] =
  BigQueryStorage
    .create("projectId", "datasetId", "tableId", DataFormat.AVRO)
    .withAttributes(
      BigQueryStorageAttributes.reader(reader))
Java
sourceGrpcBigQueryStorageReader reader =
    GrpcBigQueryStorageReader.apply(BigQueryStorageSettings.apply("localhost", 8000), sys);

Source<
        Tuple2<
            com.google.cloud.bigquery.storage.v1.stream.ReadSession.Schema,
            List<Source<ReadRowsResponse.Rows, NotUsed>>>,
        CompletionStage<NotUsed>>
    sourceForReader =
        BigQueryStorage.create(
                "projectId", "datasetId", "tableId", DataFormat.AVRO, readOptions, 1)
            .withAttributes(BigQueryStorageAttributes.reader(reader));

Reading

We can read in a number of ways. To read data from a table a read session needs to be created. On the session creation we can specify the number of streams to be used in order to transfer the data, this makes it feasible to achieve parallelism while ingesting the data, thus achieving better performance. To create a session the data format needs to be specified. The options provided are Avro and Arrow.

If no TableReadOptions are specified all the table’s columns shall be retrieved as a Source containing a Source for each stream, which will each deliver a section of the rows:

Scala
sourceimport org.apache.pekko
import pekko.NotUsed
import com.google.cloud.bigquery.storage.v1.storage.ReadRowsResponse
import com.google.cloud.bigquery.storage.v1.DataFormat
import com.google.cloud.bigquery.storage.v1.stream.ReadSession
import pekko.stream.connectors.googlecloud.bigquery.storage.scaladsl.BigQueryStorage
import pekko.stream.scaladsl.Source
import com.google.cloud.bigquery.storage.v1.stream.ReadSession.TableReadOptions
import scala.concurrent.Future

val sourceOfSources: Source[(ReadSession.Schema, Seq[Source[ReadRowsResponse.Rows, NotUsed]]), Future[NotUsed]] =
  BigQueryStorage.create("projectId", "datasetId", "tableId", DataFormat.AVRO)
Java
sourceimport org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.BigQueryRecord;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.BigQueryStorageSettings;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.javadsl.BigQueryArrowStorage;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.javadsl.BigQueryAvroStorage;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.javadsl.BigQueryStorage;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.scaladsl.BigQueryStorageAttributes;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.scaladsl.GrpcBigQueryStorageReader;
import org.apache.pekko.stream.javadsl.Source;
import org.apache.pekko.util.ByteString;
import scala.Tuple2;
import com.google.cloud.bigquery.storage.v1.DataFormat;
import com.google.cloud.bigquery.storage.v1.ReadSession;
import com.google.cloud.bigquery.storage.v1.storage.ReadRowsResponse;
import org.apache.pekko.http.javadsl.unmarshalling.Unmarshaller;

Source<
        Tuple2<
            com.google.cloud.bigquery.storage.v1.stream.ReadSession.Schema,
            List<Source<ReadRowsResponse.Rows, NotUsed>>>,
        CompletionStage<NotUsed>>
    sourceOfSources =
        BigQueryStorage.create("projectId", "datasetId", "tableId", DataFormat.AVRO);

Secondly, by specifying TableReadOptions, we can narrow down the amount of data returned, filtering down the columns returned, and/or a row_restriction. This is defined as:

SQL text filtering statement, similar to a WHERE clause in a query. Currently, only a single predicate that is a comparison between a column and a constant value is supported. Aggregates are not supported.

Scala
sourceval readOptions = TableReadOptions(selectedFields = Seq("stringField", "intField"), rowRestriction = "intField >= 5")
val sourceOfSourcesFiltered
    : Source[(ReadSession.Schema, Seq[Source[ReadRowsResponse.Rows, NotUsed]]), Future[NotUsed]] =
  BigQueryStorage.create("projectId", "datasetId", "tableId", DataFormat.AVRO, Some(readOptions))
Java
sourceReadSession.TableReadOptions readOptions =
    ReadSession.TableReadOptions.newBuilder()
        .setSelectedFields(0, "stringField")
        .setSelectedFields(1, "intField")
        .setRowRestriction("intField >= 5")
        .build();

Source<
        Tuple2<
            com.google.cloud.bigquery.storage.v1.stream.ReadSession.Schema,
            List<Source<ReadRowsResponse.Rows, NotUsed>>>,
        CompletionStage<NotUsed>>
    sourceOfSourcesFiltered =
        BigQueryStorage.create(
            "projectId", "datasetId", "tableId", DataFormat.AVRO, readOptions, 1);

You can then choose to read and process these streams as is or merged. You can process the streams merged in rows. You need to provide a ByteString Unmarshaller based on the format requested.

Scala
sourceimplicit val unmarshaller: FromByteStringUnmarshaller[List[BigQueryRecord]] =
  mock[FromByteStringUnmarshaller[List[BigQueryRecord]]]
val sequentialSource: Source[List[BigQueryRecord], Future[NotUsed]] =
  BigQueryStorage.createMergedStreams("projectId", "datasetId", "tableId", DataFormat.AVRO)
Java
sourceUnmarshaller<ByteString, List<BigQueryRecord>> unmarshaller = null;
Source<List<BigQueryRecord>, CompletionStage<NotUsed>> sequentialSource =
    BigQueryStorage.<List<BigQueryRecord>>createMergedStreams(
        "projectId", "datasetId", "tableId", DataFormat.AVRO, unmarshaller);

Or process the stream of rows individually:

Scala
sourceimport org.apache.pekko
import pekko.NotUsed
import com.google.cloud.bigquery.storage.v1.storage.ReadRowsResponse
import com.google.cloud.bigquery.storage.v1.DataFormat
import com.google.cloud.bigquery.storage.v1.stream.ReadSession
import pekko.stream.connectors.googlecloud.bigquery.storage.scaladsl.BigQueryStorage
import pekko.stream.scaladsl.Source
import com.google.cloud.bigquery.storage.v1.stream.ReadSession.TableReadOptions
import scala.concurrent.Future

val sourceOfSources: Source[(ReadSession.Schema, Seq[Source[ReadRowsResponse.Rows, NotUsed]]), Future[NotUsed]] =
  BigQueryStorage.create("projectId", "datasetId", "tableId", DataFormat.AVRO)
Java
sourceimport org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.BigQueryRecord;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.BigQueryStorageSettings;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.javadsl.BigQueryArrowStorage;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.javadsl.BigQueryAvroStorage;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.javadsl.BigQueryStorage;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.scaladsl.BigQueryStorageAttributes;
import org.apache.pekko.stream.connectors.googlecloud.bigquery.storage.scaladsl.GrpcBigQueryStorageReader;
import org.apache.pekko.stream.javadsl.Source;
import org.apache.pekko.util.ByteString;
import scala.Tuple2;
import com.google.cloud.bigquery.storage.v1.DataFormat;
import com.google.cloud.bigquery.storage.v1.ReadSession;
import com.google.cloud.bigquery.storage.v1.storage.ReadRowsResponse;
import org.apache.pekko.http.javadsl.unmarshalling.Unmarshaller;

Source<
        Tuple2<
            com.google.cloud.bigquery.storage.v1.stream.ReadSession.Schema,
            List<Source<ReadRowsResponse.Rows, NotUsed>>>,
        CompletionStage<NotUsed>>
    sourceOfSources =
        BigQueryStorage.create("projectId", "datasetId", "tableId", DataFormat.AVRO);

Since Avro and Arrow are the formats available, streams for those specific formats can be created.

You can read Arrow Record streams merged

Scala
sourceval arrowSequentialSource: Source[Seq[BigQueryRecord], Future[NotUsed]] =
  BigQueryArrowStorage.readRecordsMerged("projectId", "datasetId", "tableId")
Java
sourceSource<List<BigQueryRecord>, CompletionStage<NotUsed>> arrowSequentialSource =
    BigQueryArrowStorage.readRecordsMerged("projectId", "datasetId", "tableId");

You can read Arrow Record streams individually

Scala
sourceval arrowParallelSource: Source[Seq[Source[BigQueryRecord, NotUsed]], Future[NotUsed]] =
  BigQueryArrowStorage.readRecords("projectId", "datasetId", "tableId")
Java
sourceSource<List<Source<BigQueryRecord, NotUsed>>, CompletionStage<NotUsed>> arrowParallelSource =
    BigQueryArrowStorage.readRecords("projectId", "datasetId", "tableId");

You can read Avro Record streams merged

Scala
sourceval avroSequentialSource: Source[Seq[BigQueryRecord], Future[NotUsed]] =
  BigQueryAvroStorage.readRecordsMerged("projectId", "datasetId", "tableId")
Java
sourceSource<List<BigQueryRecord>, CompletionStage<NotUsed>> avroSequentialSource =
    BigQueryAvroStorage.readRecordsMerged("projectId", "datasetId", "tableId");

You can read Avro Record streams individually

Scala
sourceval avroParallelSource: Source[Seq[Source[BigQueryRecord, NotUsed]], Future[NotUsed]] =
  BigQueryAvroStorage.readRecords("projectId", "datasetId", "tableId")
Java
sourceSource<List<Source<BigQueryRecord, NotUsed>>, CompletionStage<NotUsed>> avroParallelSource =
    BigQueryAvroStorage.readRecords("projectId", "datasetId", "tableId");

Running the test code

The tests use a BigQueryMockServer that implements the server defined in the protobuf for the Storage API. It essentially provides a mock table on which to query. Tests can be started from sbt by running:

sbt
> google-cloud-bigquery-storage/test