MongoDB
The MongoDB connector allows you to read and save documents. You can query a stream of documents from MongoSource
or update documents in a collection with MongoSink
.
This connector is based on the MongoDB Java Driver, which is compatible with MongoDB versions 2.6 through 4.4.
Another MongoDB connector is available - ReactiveMongo. It is a Scala driver that provides fully non-blocking and asynchronous I/O operations. Please read more about it in the ReactiveMongo documentation.
Project Info: Apache Pekko Connectors MongoDB | |
---|---|
Artifact | org.apache.pekko
pekko-connectors-mongodb
1.1.0
|
JDK versions | OpenJDK 8 OpenJDK 11 OpenJDK 17 OpenJDK 21 |
Scala versions | 2.13.15, 2.12.20 |
JPMS module name | pekko.stream.connectors.mongodb |
License | |
API documentation | |
Forums | |
Release notes | GitHub releases |
Issues | Github issues |
Sources | https://github.com/apache/pekko-connectors |
Artifacts¶
val PekkoVersion = "1.1.3"
libraryDependencies ++= Seq(
"org.apache.pekko" %% "pekko-connectors-mongodb" % "1.1.0",
"org.apache.pekko" %% "pekko-stream" % PekkoVersion
)
<properties>
<pekko.version>1.1.3</pekko.version>
<scala.binary.version>2.13</scala.binary.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.pekko</groupId>
<artifactId>pekko-connectors-mongodb_${scala.binary.version}</artifactId>
<version>1.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.pekko</groupId>
<artifactId>pekko-stream_${scala.binary.version}</artifactId>
<version>${pekko.version}</version>
</dependency>
</dependencies>
def versions = [
PekkoVersion: "1.1.3",
ScalaBinary: "2.13"
]
dependencies {
implementation "org.apache.pekko:pekko-connectors-mongodb_${versions.ScalaBinary}:1.1.0"
implementation "org.apache.pekko:pekko-stream_${versions.ScalaBinary}:${versions.PekkoVersion}"
}
The table below shows direct dependencies of this module and the second tab shows all libraries it depends on transitively.
Initialization¶
In the code examples below we will be using Mongo’s support for automatic codec derivation for POJOs. For Scala we will be using a case class and a macro based codec derivation. For Java a codec for POJO is derived using reflection.
sourcecase class Number(_id: Int)
sourcepublic final class Number {
private Integer _id;
public Number() {}
public Number(Integer _id) {
this._id = _id;
}
public void setId(Integer _id) {
this._id = _id;
}
public Integer getId() {
return _id;
}
}
For codec support, you first need to setup a CodecRegistry.
sourceimport org.bson.codecs.configuration.CodecRegistries.{ fromProviders, fromRegistries }
import org.mongodb.scala.MongoClient.DEFAULT_CODEC_REGISTRY
import org.mongodb.scala.bson.codecs.Macros._
val codecRegistry =
fromRegistries(fromProviders(classOf[Number]: @nowarn("msg=match may not be exhaustive")), DEFAULT_CODEC_REGISTRY)
sourcePojoCodecProvider codecProvider = PojoCodecProvider.builder().register(Number.class).build();
CodecRegistry codecRegistry =
CodecRegistries.fromProviders(codecProvider, new ValueCodecProvider());
Sources provided by this connector need a prepared collection to communicate with the MongoDB server. To get a reference to a collection, let’s initialize a MongoDB connection and access the database.
sourceprivate val client = MongoClients.create("mongodb://localhost:27017")
private val db = client.getDatabase("MongoSourceSpec")
private val numbersColl = db
.getCollection("numbers", classOf[Number])
.withCodecRegistry(codecRegistry)
sourceclient = MongoClients.create("mongodb://localhost:27017");
db = client.getDatabase("MongoSourceTest");
numbersColl = db.getCollection("numbers", Number.class).withCodecRegistry(codecRegistry);
We will also need an ActorSystem
.
Source¶
Let’s create a source from a Reactive Streams Publisher.
sourceval source: Source[Number, NotUsed] =
MongoSource(numbersColl.find(classOf[Number]))
sourcefinal Source<Number, NotUsed> source = MongoSource.create(numbersColl.find(Number.class));
And then run it.
sourceval rows: Future[Seq[Number]] = source.runWith(Sink.seq)
sourcefinal CompletionStage<List<Number>> rows = source.runWith(Sink.seq(), system);
Here we used a basic sink to complete the stream by collecting all of the stream elements to a collection. The power of streams comes from building larger data pipelines which leverage backpressure to ensure efficient flow control. Feel free to edit the example code and build more advanced stream topologies.
Flow and Sink¶
Each of these sink factory methods have a corresponding factory in MongoFlow
which will emit the written document or result of the operation downstream.
Insert¶
We can use a Source of documents to save them to a mongo collection using MongoSink.insertOne
or MongoSink.insertMany
.
sourceval testRangeObjects = testRange.map(Number)
val source = Source(testRangeObjects)
source.runWith(MongoSink.insertOne(numbersColl)).futureValue
sourceList<Number> testRangeObjects = testRange.stream().map(Number::new).collect(toList());
final CompletionStage<Done> completion =
Source.from(testRangeObjects).runWith(MongoSink.insertOne(numbersColl), system);
Insert Many¶
Insert many can be used if you have a collection of documents to insert at once.
sourceval objects = testRange.map(Number)
val source = Source(objects)
val completion = source.grouped(2).runWith(MongoSink.insertMany[Number](numbersColl))
sourcefinal List<Number> testRangeObjects = testRange.stream().map(Number::new).collect(toList());
final CompletionStage<Done> completion =
Source.from(testRangeObjects).grouped(2).runWith(MongoSink.insertMany(numbersColl), system);
Update¶
We can update documents with a Source of DocumentUpdate
which is a filter and an update definition. Use either MongoSink.updateOne
or MongoSink.updateMany
if the filter should target one or many documents.
sourceval source = Source(testRange).map(i =>
DocumentUpdate(filter = Filters.eq("value", i), update = Updates.set("updateValue", i * -1)))
val completion = source.runWith(MongoSink.updateOne(numbersDocumentColl))
sourcefinal Source<DocumentUpdate, NotUsed> source =
Source.from(testRange)
.map(
i ->
DocumentUpdate.create(
Filters.eq("value", i), Updates.set("updateValue", i * -1)));
final CompletionStage<Done> completion =
source.runWith(MongoSink.updateOne(numbersDocumentColl), system);
Delete¶
We can delete documents with a Source of filters. Use either MongoSink.deleteOne
or MongoSink.deleteMany
if the filter should target one or many documents.
sourceval source = Source(testRange).map(i => Filters.eq("value", i))
val completion = source.runWith(MongoSink.deleteOne(numbersDocumentColl))
sourcefinal Source<Bson, NotUsed> source = Source.from(testRange).map(i -> Filters.eq("value", i));
final CompletionStage<Done> completion =
source.runWith(MongoSink.deleteOne(numbersDocumentColl), system);